Transition Metal Iodates. VII. Crystallographic and Nonlinear Optic Survey of the 4*f*-Iodates

S. C. ABRAHAMS, J. L. BERNSTEIN, AND K. NASSAU

Bell Laboratories, Murray Hill, New Jersey 07974

Received May 29, 1975

Thirteen crystallographically distinct families of 4f-iodates, including hydrates, have been investigated. The anhydrous Type I family, extending from Ce to Lu, crystallizes in the monoclinic system, space group $P2_1/a$: The lattice constants of Gd(IO₃)₃, for example, are $a = 13.389 \pm 0.006$, b = 8.500 ± 0.002 , $c = 7.106 \pm 0.002$ Å, $\beta = 99.73 \pm 0.03^{\circ}$ with four formulas per unit cell. Yb(IO₃)₃ and Lu(IO₃)₃ also crystallize in Type II with monoclinic space group $P2_1/c$ and lattice constants for Yb(IO₃)₃ of $a = 8.685 \pm 0.005$, $b = 6.066 \pm 0.002$, $c = 16.687 \pm 0.009$ Å, $\beta = 115.01 \pm 0.18^{\circ}$, and four formulas per unit cell. Polycrystalline samples only of the anhydrous Types III, IV, V, and VI have been prepared and typical powder patterns are given. All anhydrous 4f-iodates form in centrosymmetric space groups. La and Ce grow as hemihydrates in the orthorhombic space group $C222_1$, with $a = 19.26 \pm 0.01$, $b = 7.40 \pm 0.01$, $c = 6.76 \pm 0.01$ for La(IO₃)₃· $\frac{1}{2}$ H₂O, and both generate second harmonics more efficiently than quartz. Ce, Pr, Nd, Pm, and Sm form monohydrates, space group $P2_1$, with lattice constants for Sm(IO₃)₃·H₂O of $a = 10.080 \pm 0.007$, $b = 6.642 \pm 0.006$, $c = 7.250 \pm 0.008$ Å, $\beta = 112.9 \pm 0.1^{\circ}$, and two formulas per unit cell. The monohydrates are also more efficient than quartz at generating second harmonics. Two dihydrated families grow: Type I from Tm to Lu and Type II from Nd to Er, both triclinic. Lu(IO₃)₃·2H₂O has $a = 8.018 \pm 0.012$, $b = 9.956 \pm 0.021$, $c = 6.969 \pm 0.016$ Å, $\alpha = 99.8 \pm 0.2^{\circ}$, $\beta = 93.8 \pm 0.2^{\circ}$, $\gamma = 68.2 \pm 0.2^{\circ}$ with two formulas in the unit cell, space group PI. Nd(IO₃)₃·2H₂O has $a = 7.56 \pm 0.04$, $b = 10.77 \pm 0.05$, $c = 7.34 \pm 0.02$ Å, $\alpha = 105.3 \pm 0.4^{\circ}$, $\beta = 110.8 \pm 0.7^{\circ}$, $\gamma = 97.9 \pm 0.6^{\circ}$ with two formulas per cell and space group PI. Polycrystalline Gd to Lu(IO₃)₃·4H₂O, and Ce to Sm(IO₃)₃·5H₂O Type I form in centrosymmetric space groups; powder patterns for two tetrahydrates and the four pentahydrates are given. La(IO₃)₃·5H₂O and Pr(IO₃)₃·5H₂O, Type II, are monoclinic, space group $P2_1/m$, with lattice constants for $Pr(IO_3)_3 \cdot 5H_2O$ of $a = 6.768 \pm 0.008$, $b = 23.120 \pm 0.039$, $c = 7.107 \pm 0.007$ Å, $\beta = 112.7 \pm 0.1^{\circ}$, and four formulas per unit cell.

1. Introduction

The search for new materials with an enhanced possibility of coupled magnetic, optic, and polar properties (1) has led previously to the preparation and characterization of the 3d and cupric iodates (2, 3) and to a crystallographic, magnetic, and nonlinear optic survey of the properties of these crystals (4, 5). The lanthanide iodates with formula $Ln(IO_3)_3 \cdot xH_2O$ (Ln from Eu to Lu, including Y, and $0 \le x \le 4$) have now been prepared and characterized (6), followed by a comparable study on materials with Ln from Ce to Sm,

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain but excluding Pm, and $0 \le x \le 5$ (7). Following the earlier convention for polymorphic iodates (6), a Type N iodate is designated by the notation x_N . The crystallographic and nonlinear optic properties of these new anhydrous and hydrated 4*f*-iodates have been surveyed and the results are reported in the present paper.

2. Anhydrous Type I 4f-Iodates from Ce to Lu

The largest family of isostructural rareearth iodates is the anhydrous Type I, crystallizing in the monoclinic system. All

Rare earth	a (Å)ª	b (Å)	c (Å)	β (°)	Volume (Å ³)	Calculated ^b density (g cm ⁻³)
Ce	13.555 + 20	8.565 + 9	7.214 + 12	99.68 + 0.28	825.6	5.35
Pr	13.520 + 8	8.557 + 4	7.198 + 8	99.88 + 0.07	820.4	5.39
Nd	13.504 ± 19	8.534 ± 6	7.192 ± 8	100.05 ± 0.12	816.1	5.44
Sm	13.404 ± 5	8.509 ± 2	7.143 ± 2	99.82 ± 0.03	802.8	5.58
Eu	13.361 ± 13	8.486 ± 4	7.115 ± 5	99.88 ± 0.10	794.8	5.65
Gd	13.389 ± 6	8.500 ± 2	7.106 ± 2	99.73 ± 0.03	797.1	5.68°
Tb	13.356 ± 13	8.482 ± 5	7.072 ± 6	99.60 ± 0.08	789.9	5.75
Dy	13.291 ± 8	8.446 ± 4	7.034 ± 3	99.68 ± 0.05	778.4	5.86
Ho	13.283 ± 6	8.425 ± 4	7.010 ± 3	99.67 ± 0.05	773.3	5.92
Er	13.262 ± 12	8.441 ± 4	7.003 ± 5	99.72 ± 0.07	772.7	5.95
Tm	13.226 ± 12	8.408 ± 4	6.964 <u>+</u> 5	99.65 ± 0.08	763.5	6.03
Yb	13.230 ± 6	8.390 ± 3	6.962 ± 3	99.72 ± 0.03	761.7	6.08
Lu	13.207 ± 6	8.398 ± 3	6.944 ± 3	99.82 ± 0.03	758.9	6.12
Y	13.275 ± 41	8.440 ± 5	7.003 ± 9	99.60 ± 0.15	773.6	5.26 ^d

 TABLE I

 Crystallographic Data for the Anhydrous 4f-Iodates of Type I

^a Error values here and elsewhere in this paper without decimal point correspond to the least significant digit.

^b For four formula weights per unit cell, in space group $P2_1/a$.

^c $Dm = 5.70 \pm 10 \text{ g cm}^{-3}$ for Gd(IO₃)₃.

^{*d*} $Dm > 5.0 \text{ g cm}^{-3}$ for Y(IO₃)₃.

 O_1 compounds may be prepared by dehydration of the appropriate hydrate. Crystals of anhydrous Eu to Tm iodate only are obtained from boiling HNO₃ (6). The single crystal diffraction patterns show systematic absences only in h0l with h = 2n + 1 and in 0k0 with k = 2n + 1, corresponding to the space group $P2_1/a$. The lattice constants, given in Table I,

FIG. 1. Variation in unit cell volume of the anhydrous 4*f*-iodates, Type I, with atomic number of 4*f*-transition element. The error bar denotes one standard deviation in unit cell volume.

were obtained by the method of least squares, using the program of Evans *et al.* (8). The input spacings were measured on Straumanismounted Debye-Scherrer photographs, taken with $CrK\alpha$ ($\lambda = 2.2909$ Å) radiation, and are listed in Table II. For well-resolved high-angle lines, wavelength values $\lambda \alpha_1 = 2.2896$ and $\lambda \alpha_2 = 2.2935$ Å were used. The unit cell of each O_1 crystal contains four formula weights. The only density measured was for Gd(IO₃)₃, Type I at 5.70 ± 0.10 g cm⁻³. The normal lanthanide contraction with increasing atomic number is clearly seen in Fig. 1, with no volume differing significantly from the mean.

As expected for centrosymmetric crystals, no generation of second harmonics was observed.

3. Anhydrous Type II 4f-Iodates, Yb and Lu

Yb(IO₃)₃ and Lu(IO₃)₃ crystallize polymorphically in the monoclinic system, with the O_{II} form produced from solution in boiling HNO₃. The systematic absences

		~	1	m	S	1	4		$\overline{\vee}$	10	\overline{v}	6	1	2	1	2	\overline{v}	-		$\overline{\vee}$	4	e	٢		-	$\left \overline{v} \right $	\overline{v}	Ч	e	Ч	-	ī	10	ī	00	-	-	-	ī	ī	-	-	īv	2	-	9
105	6/601)	dcalc (Å)	5.201	3.898	3.623	3.487	3.419	3.319	3.298	3.292	3.250	3.064	2.923	2.888	2.764	2.622	2.549	2.489	2.324	2.237	2.224	2.121	2.052	(IO ₃)3	d _{calc} (Å)	5.172	3.876	3.609	3.490	3.401	3.288	3.277	3.273	3.221	3.046	2.914	2.877	2.748	2.601	2.534	2.479	2.326	2.225	2.217	2.108	2.049
OF TYPE I		$d_{obs}(\mathbf{\hat{A}})$	5.189	3.910	3.626	3.487	3.410	3.319	1	3.292	l	3.060	2.921	2.891	2.764	2.621	I	2.488	2.341	1	2.220	2.122	2.041	Y	$d_{obs}(\mathbf{\hat{A}})$		I	3.596	3.451	3.387	1	1	3.272	I	3.041	2.903	2.867	2.749	1	I	2.477	2.327	1	2.203	2.111	2.026
DATES		I	$\overline{\mathbf{v}}$	$\overline{\overline{v}}$	4	9	4	ŝ	$\overline{\mathbf{v}}$	10	-	6	6	e	7	4	$\overline{\mathbf{v}}$	٦	ы	īv	ŝ	4	٢		~	1	$\overline{\mathbf{v}}$	ę	e	6		7	10	-	8	-	2	-	-	-	-	-	1 V	ŝ	ę	9
ROUS 4/-IO	((103)3	d _{сыlc} (Å)	5.212	3.907	3.633	3.502	3.427	3.337	3.308	3,299	3.265	3.071	2.931	2.897	2.770	2.634	2.557	2.495	2.338	2.242	2.230	2.125	2.059	1(IO ₃)3	dcalc(Å)	5.144	3.854	3.579	3.421	3.375	3.266	3.261	3.253	3.197	3.024	2.890	2.836	2.737	2.588	2.522	2.462	2.281	2.212	2.200	2.099	2.028
HE ANHYD	5	$d_{\rm obs}({\rm \AA})$	I	I	3.362	3.501	3.426	3.333	I	3.297	3.264	3.072	2.932	2.898	2.769	2.634	I	2.496	2.335	ļ	2.226	2.154	2.048	L L	$d_{\rm obs}({\rm \AA})$		-	3.576	3.420	3.365		ł	3.252	3.199	3.025	2.892	2.836	2.736	2.587	2.523	2.462	2.310	1	2.185	2.104	2.010
S OF TI	İ	7	$\overline{\nabla}$	$\overline{\mathbf{v}}$	e	9	e	4	$\overline{}$	10	īv	œ	Ŧ	-	-		īv	1	m	īv	4	m	٢		~	1	$\overline{\overline{v}}$	ę	4	ы	-	7	10	-	œ	-	6	-	-	1	-	I v	ī	7	2	9
NTENSITIE	103/3	$d_{calc}(\mathbf{\dot{A}})$	5.201	3.897	3.630	3.505	3.422	3.340	3.305	3.291	3.268	3.065	2.927	2.894	2.766	2.635	2.554	2.492	2.336	2.237	2.227	2.122	2.058	([O ₃) ₃	catc(Å)	5.148	3.860	3.579	3.431	3.376	3.272	3.261	3.260	3.203	3.027	2.891	2.845	2.735	2.592	2.523	2.461	2.287	2.215	2.202	2.098	2.028
ELATIVE I	Eu	d _{obs} (Å)	1	I	3.633	3.500	3.416	3.331	I	3.392	1	3.065	2.923	.895	2.758	1	1	2.493	338	ļ	2.224	.122	050	γP	b (Å) d]	1.582	.433	.375	1	1	.261	.203	027	.892	84	.734	591	1	.470			.192	. 106	.015
KVED P	, 	I	-	1	4	9	6	en	-	0	1	00	-	2	-	1	1	-	е С	-	ŝ	4	1		4	-	-	ຕ ຕ	е С	с н	1	-	0	- -	6	1	2	1	1	1	1	I	-	9 9	5	6
ND OBSET	C3J3	calc (Å)	.217 <	> 010	.641	.519	.433	.352	.314 <	.302	.280 <	.076	.936	-907	.773	.643	- 5 61 <	.499	.346	.244 <	.234	.127	.064	03)3	11c(Å)	.152 <	.861 <	.585	.433	.382	272 <	265 <	260 1	204	.032	893	.847	740	590	524	465 <	288	216 <	203	.102	.030
STROMS /	Thine	$b_{s}(\mathbf{\dot{A}}) d$	1	۳ ۱	i37 3	521 3	122 3	149 3	m 1	805 3	۳ ۳	75 3	35 2	07 2	74 2	346 2		200	46 2	- 1	32 2	28 2	58 2	Tm(I	$(\mathbf{A}) = d_{c_1}$	s	е 1	82 3	28 3.	80 3		1	57 3.	05 3.	29	89 2	51 2	6	91 2.	27 2.	-	15 2	- 2	93 2	03 2	15 2
n Ånc	1	d_0	1	1	ë.	9.5	т. М	ŝ	1	Э.	ľ	3.0	5	2.5	2	3	I	2	2.3		2	2.1	5.0		dot	!	1	3.5	3.4	3.3	I	I	3.2	3.2	3.0	2.8	58 73	2.7	2.5	2.5	I	2.3	I	2.1	2.1	2.0
INGS I		V) /	V	V	-	4	6	ŝ	$\overline{}$	10	V	×	$\overline{\vee}$	7	-	1	\overline{v}	V	7	$\overline{\vee}$	4	2	Ŷ		-	Ī	\overline{v}	e	4	2	~	V	01	-	00	I	2	1		-	-	V	V	4	4	Ŷ
ER d-SPAC	u(LU3)3) d _{calc} (5.245	3.933	3.655	3.541	3.446	3.380	3.332	3.324	3.302	3.087	2.953	2.921	2.782	2.667	2.577	2.510	2.361	2.257	2.249	2.133	2.076	(IO3)3	$d_{calc}(\mathbf{\hat{A}})$	5.167	3.872	3.601	3.451	3.396	3.290	3.278	3.268	3.221	3.043	2.904	2.859	2.751	2.602	2.534	2.475	2.301	2.222	2.210	2.110	2.039
-SCHERR		d _{obs} (Å	Ι	1	3.646	3.451	3.438	3.379	I	3.324	Ι	3.087	I	2.923	2.780	2.667	I	I	2.361	I	2.243	2.136	2.071	H	$d_{obs}(\mathbf{\dot{A}})$		I	3,600	3.453	3.389	I	I	3.271	3.225	3.042	2.904	2.858	2.751	2.600	2.538	2.478	l	1	2.200	2.110	2.025
DEBY		~	$\overline{\mathbf{v}}$	-	-	'n	-	m	$\overline{\mathbf{v}}$	10	$\overline{\nabla}$	œ	1	Ч	-	1	īv	ī	īv	ī	-	ы	4		-	$\overline{\nabla}$	$\overline{\mathbf{v}}$	Ś	9	Ч	-		2	1	×	н	m	-	-	1	1	1	-	ę	ę	œ
CULATED	E/EOT)	dcalc (Å)	5.329	3.941	3.663	3.546	3.455	3.380	3.414	3.330	3.323	3.096	2.957	2.928	2.789	2.667	2.615	2.590	2.364	2.285	2.252	2.139	2.079	(IO ₃)3	fcalc(Å)	5.170	3.876	3.597	3.455	3.394	3.293	3.276	3.274	3.223	3.042	2.903	2.864	2.746	2.605	2.534	2.472	2.304	2.224	2.211	2.106	2.038
D AND CAL		dobs (Å)	1	3.947	3.666	3.563	3.448	3.396	1	3.332	I	3.095	2.956	2.927	2.789	2.679	1	ł	1	Ι	2.250	2.139	2.080	Ho	dobs(Å) a		Ι	3.597	3.452	3.392	I	Ι	3.274	3.224	3.043	2.900	2.862	2.747	2.605	2.537	2.481	2.305	2.225	2.204	2.112	2.027
BSERVE		~	īv	-	ы	ŝ	2	n	$\overline{\nabla}$	10	īv	œ	ы	.	-	1	v V	ī	-	ī		Ч	9		~	1	-	ŝ	٢	4	ī	ī,	<u>0</u> ·	- •	× ×	-	4	1	2	-		I	-	9	Ś	8
UON U	6/62-1	d _{calc} (A)	5.268	3.952	3.669	3.556	3.462	3.384	3.340	3.341	3.310	3.104	2.961	2.940	2.792	2.669	2.584	2.518	2.370	2.267	2.255	2.141	2.081	(IO ₃)3	dcalc(Å)	5.176	3.879	3.607	3.467	3.402	3.302	3.283	3.275	3.234	3.049 2 2 2 2 2	2.909	2.871	2.752	2.610	2.538	2.478	2.311	2.227	2.214	2.111	2.043
		$d_{\rm obs}(A)$	1	3.951	3.668	3.576	3.459	3.409	1	3.338	1	3.102	2.950		2.793	2.693	1	1	2.371	I	2.259	2.142	2.088	Dy	$l_{obs}(h)$	1	3.880	3.605	3.464	3.397	Ι	1	3.276	3.235	3.049 2.000	2.908	2.871	2.751	2.609	2.537	2.482	2.313	!	2.209	2.112	2.034
		1 % 1	210	310	170	0.0.2	121	202	221	400	112	221	321	202	130	402	421	231	003	520	521	040	332		441 6	210	310	021	002	121	202	221	400	112	177	3 4 1	202	130	402	421	231	003	520	521	040	332

CRYSTALLOGRAPHIC SURVEY OF THE 4*f*-iodates

175

TABLE III

Crystallographic Data for $Yb(IO_3)_3$ and $Lu(IO_3)_3$, Type II

	Yb(IO ₃) ₃	Lu(IO ₃) ₃
a (Å)	8.685 ± 5	8.689 ± 11
b (Å)	6.066 ± 2	6.057 ± 5
c (Å)	16.687 ± 9	16.678 ± 10
β	$115.0 \pm 0.2^{\circ}$	$114.3 \pm 0.2^{\circ}$
Volume (Å ³)	796.7	800.1
Ζ	4	4
$Dx (g \text{ cm}^{-3})$	5.82	5.81
$Dm (g cm^{-3})$	>5.0	
S.G.	$P2_1/c$	$P2_1/c$

observed in single crystal precession photographs are in 0k0 only for k = 2n + 1 and in k0l only for l = 2n + 1, corresponding to the space group $P2_1/c$. The lattice constants, obtained as for the O_I compounds, are given in Table III, the indexed powder-pattern spacings in Table IV. The slightly smaller volume of the respective O_I unit cells indicates a correspondingly more efficient packing arrangement. The *b*-lattice constant for O_I and c/2-lattice constant for O_{II} types are of comparable size.

4. Anhydrous Type III 4*f*-Iodates from Ce to Sm

Polycrystalline material only of $Ce(IO_3)_3$, Pr(IO₃)₃, Nd(IO₃)₃, and Sm(IO₃)₃, Type III was obtainable (7) by dehydration of the monohydrate. The unit cell dimensions were not determined, but the *d*-spacings of Nd(IO₃)₃, Type III are given as representative of O_{1II} in Table V. It may be noted that the O_{1II} compounds rapidly hydrate to form the corresponding monohydrate (7).

	Y	b(IO ₃) ₃		Lu(IO ₃) ₃				
h k l	$d_{\rm obs}({ m \AA})$	d _{calc} (Å)	I	d_{obs} (Å)	d_{calc} (Å)	I		
Ī11	4.91	4.96	1	_	4.97	< 1		
012	4.74	4.73	1		4.74	< 1		
111	4.21	4.27	5	4.21	4.27	1		
004	3.78	3.78	7	3.79	3.79	5		
112	3.67	3.65	2		3.66	< 1		
204	3.59	3.59	2		3.60	< 1		
201	3.47	3.47	4	3.48	3.48	4		
2 13	3.35	3.36	10	3.35	3.36	10		
210	3.27	3.30	9	3.27	3.31	8		
020	3.03	3.03	4	3.03	3.30	3		
021	2.97	2.97	3	2.97	2.97	2		
302	2.89	2.89	6	2.89	2.89	6		
120	2.82	2.83	4	2.83	2.83	2		
I 2 2	2.79	2.79	4	2.80	2.79	2		
106	2.75	2.76	5	2.74	2.76	8		
015	2.72	2.71	1	2.72	2.17	1		
313	—	2.60	< 1	2.60	2.60	2		

TABLE IV

Observed and Calculated d-Spacings⁴ and Observed Intensities of Yb(IO₃)₃ and Lu(IO₃)₃, Type II

^{*a*} Absorption effects displace observed lines with d > 4 Å toward higher angles.

TABLE	٧
-------	---

				-				
	Nd(IO ₃) ₃ , T	ype III	La(IO ₃) ₃ , T	ype IV	Ce(IO ₃) ₃ , T	ype V ^a	La(IO ₃) ₃ , Ty	ype VI
	dobs (Å)	I	d_{obs} (Å)	I	$d_{\rm obs}({\rm \AA})$	I	d_{obs} (Å)	I
-	4.81	1	4.18	5	4.85	4	4.00	1
	3.89	1	3.84	5	3.70	6	3.63	6
	3.81	2	3.63	8	3.32	10	3.55	6
	3.37	3	3.54	5	3.18	1	3.43	4
	3.32	3	3.40	4	3.02	8	3.31	8
	3.20	10	3.29	3	2.75	1	3.28	10
	3.14	6	3.26	4	2.08	1	3.10	9
	3.01	8	3.18	9	1.99	2	2.98	5
	2.71	1	3.08	10	1.75	2	2.91	1
	2.34	5	3.00	6	1.57	1	2.76	1
	2.11	2	2.83	1			2.72	1
	2.01	3	2.75	7			2.60	3
	1.96	1	2.64	4			2.55	1
	1.91	2	2.49	1			2.48	2
	1.90	1	2.32	1			2.38	4
	1.86	4	2.24	1			2.34	1
	1.85	1	2.21	1			2.31	1
	1.72	4	2.10	4			2.26	3
	1.64	2	2.06	2			2.16	4
			2.03	4			2.12	5
			2.01	2			2.08	9
							2.02	2
								-

Observed d-Spacings and Intensities of $Nd(IO_3)_3$, Type III; $La(IO_3)_3$, Type IV; $Ce(IO_3)_3$, Type V; and $La(IO_3)_3$, Type VI

^{*a*} Pattern as given is complete to d = 1.57 Å.

TABLE VI

Observed and Calculated *d*-Spacings and Observed Intensities of La and $Ce(IO_3)_3 \cdot \frac{1}{2}H_2O$

	La(I	$O_3)_3 \cdot \frac{1}{2}H_2O$		Ce(I	$O_3)_3 \cdot \frac{1}{2}H_2O$	
h k l	$d_{\rm obs}({\rm \AA})$	$d_{\rm calc}({\rm \AA})$	Ι	dobs (Å)	$d_{\text{calc}}(\text{\AA})$	Ι
111	4.83	4.83	1	4.82	4.84	1
211	4.39	4.43	5	4.37	4.39	3
311	3.97	3.94	6	3.96	3.93	1
500	3.86	3.85	2	3.84	3.79	4
020	3.70	3.70	1	3.69	3.71	1
120	3.62	3.63	4	3.62	3.64	3
$411 \\ 220 $	3.44	3.47 3.45	3	3.43	3.44 3.45	3
002	3.38	3.38	1	3.37	3.40	3
102	3.31	3.33	10	3.30	3.34	9
320	3.26	3.21	6	3.25	3.20	4
600	3.22	3.21	6	3.23	3.16	4
202	3.16	3.19	7	3.16	3.16	6
511	3.05	3.05	9	3.04	3.01	10
302	3.02	3.00	1	2.96	2.96	1

5. Anhydrous Type IV 4f-Iodates, La, Ce and Pr; Anhydrous Type V 4f-Iodates, Ce to Sm; Anhydrous Type VI La Iodate

Only polycrystalline material from the three families in this section was obtainable.

TABLE VII

Crystallographic Data for $La(IO_3)_3 \cdot \frac{1}{2}H_2O$ and $Ce(IO_3)_3 \cdot \frac{1}{2}H_2O$

	La(IO ₃) ₃ . $\frac{1}{2}$ H ₂ O	$Ce(IO_3)_3 \cdot \frac{1}{2}H_2O$
a (Å)	19.26 ± 1	18.93 ± 5
b (Å)	7.40 ± 1	7.34 ± 2
c (Å)	6.76 <u>+</u> 1	6.71 ± 1
Volume (Å ³)	963.5	932.3
S .G.	C222 ₁	C222 ₁
$Dx (g cm^{-3})$	4.64	4.79
$Dm(g \text{ cm}^{-3})$	4.7 ± 0.2	
Z	4	4

Unindexed *d*-spacings and observed intensities for one member of each isostructural family are given in Table V.

Evidence for second harmonic generation has not been found in any of the six structural types in which the 4*f*-anhydrous iodates crystallize.

6. Hemihydrated 4f-Iodates, La and Ce

The only rare-earth iodate hemihydrates are formed by La and Ce (7). La(IO₃)₃ $\cdot \frac{1}{2}H_2O$ crystallizes from boiling water in the relatively uncommon space group C222₁ (with (*hkl*) systematically absent for h + k = 2n + 1 and 00*l* with l = 2n + 1). Under similar conditions, the Ce hemihydrate forms as microcrystalline spherulites, often accompanied by transparent yellow-green crystals of the monohydrate (see Section 7). In some batches, larger crystals of Ce(IO₃)₃ $\cdot \frac{1}{2}H_2O$ also grow. Ap-

TABLE VIII

Observed and Calculated d-Spacings and Observed Intensities for the Rare-Earth Iodate Monohydrates Type I

	Ce(]	(O3)3 · H2O		Pr(I	O ₃) ₃ ·H ₂ O		Nd(I	O₃)₃∙H₂O		Sm(I	O3)3 · H20)
h k l	dobs (Å)	d _{catc} (Å)	Ι	$d_{\rm obs}({\rm \AA})$	d _{calc} (Å)	Ι	d_{obs} (Å)	d _{calc} (Å)	I	$d_{\rm obs}({\rm \AA})$	d _{calc} (Å)
100	9.59	9.52	1		9.38	<1		9.40	<1		9.29	< 1
001		6.82	< 1	6.67	6.76	1	6.71	6.74	1		6.68	<1
200		4.76	< 1	4.73	4.68	1	4.72	4.71	3	4.65	4.64	1
211	3.95	4.00	1	3.92	3.93	6	3.90	3.92	5	3.88	3.88	5
111	3.86	3.86	1	3.83	3.83	5	3.82	3.83	4	3.78	3.80	4
301	3.41	3.41	10	3.38	3.38	6	3.37	3.37	5	3.34	3.35	7
020	3.38	3.38	2	3.35	3.35	4	3.34	3.34	4	3.31	3.32	2
201		3.32	< 1	3.28	3.29	5	3.28	3.30	5	3.26	3.26	6
I 12		3.27	< 1	3.22	3.22	10	3.21	3.21	10	3.18	3.18	10
300	3.17	3.17	2	3.15	3.12	4	3.14	3.13	4	3.11	3.10	5
311	3.04	3.04	1	3.02	3.02	9	3.01	3.01	9	2.99	2.99	8
211	2.97	3.02	1	2.95	2.95	7	2.94	2.94	7	2.93	2.90	5
310	_	2.87	< 1	2.83	2.83	1	2.83	2.84	1	2.79	2.81	1
221	_	2.79	<1	2.76	2.76	2	2.75	2.75	2	2.72	2.73	3
121		2.75	< 1	2.72	2.72	2	2.72	2.72	2	2.70	2.70	2
312		2.75	< 1	2.70	2.70	2	2.69	2.69	1	_	2.66	< 1
401	—	2.60	< 1	2.55	2.55	1		2.54	<1	2.52	2.52	1
Ī 2 2		2.50	<1	2.48	2.48	1	2.47	2.47	1	2.45	2.45	1
022	_	2.40	<1	2.38	2.38	3	2.37	2.37	3	2.36	2.36	1
221		2.37	<1	2.35	2.38	3	2.34	2.35	3	2.33	2.33	1

proximate lattice constants, obtained from single-crystal diffraction photographs, were used as input terms in a least-squares refinement based on the *d*-spacings in Table VI to give the values of Table VII.

Both hemihydrates generate second harmonics, with an efficiency approaching an order of magnitude greater than that of quartz.

7. Monohydrated 4f-Iodates, Ce to Sm

The monohydrated 4*f*-iodates crystallize from boiling water in the monoclinic system.

Powder patterns of $Ce(IO_3)_3 \cdot \frac{1}{2}H_2O$ (Table VI) and $Ce(IO_3)_3 \cdot H_2O$ (Table VIII) are very similar, although the single crystal diffraction symmetry reveals the difference in crystal systems. Accurate lattice constants measured for Nd(IO_3)_3 \cdot H_2O (9) and given in Table IX allowed the powder patterns for the four members of this family to be indexed (Table VIII). Lattice constants for Ce, Pr, and Sm iodate monohydrate were thereby obtained using least-squares refinement (Table IX). A *B*-centered cell may be derived from the constants of Table IX to give a' = 19.067,

ΤA	BL	Æ	IX
***	_	_	***

CRYSTALLOGRAPHIC DATA FOR THE MONOHYDRATED 4*f*-IODATES, TYPE I, FROM Ce TO Sm

	$Ce(IO_3)_3 \cdot H_2O$	Pr(IO ₃) ₃ ·H ₂ O	$Nd(IO_3)_3 \cdot H_2O^a$	$Pm(IO_3)_3 \cdot H_2O^b$	$Sm(IO_3)_3 \cdot H_2O$
a (Å)	10.428 ± 17	10.198 <u>+</u> 9	10.2012 ± 13	10.172 + 13	10.080 + 7
b (Å)	6.760 ± 33	6.706 ± 7	6.70530 ± 4	6.700 + 20	6.642 + 6
c (Å)	7.469 ± 7	7.357 ± 9	7.3538 ± 9	7.289 + 24	7.250 + 8
β	$114.1 \pm 0.1^{\circ}$	$113.3 \pm 0.1^{\circ}$	$113.11 \pm 0.02^{\circ}$	$113.1 + 0.2^{\circ}$	$112.9 \pm 0.1^{\circ}$
Volume (Å ³)	480.6	462.1	462.65	456.9	447.1
S.G.	$P2_1$	P2,	$P2_1$	$P2_1$	P2,
$Dx (g cm^{-3})$	4.72	4.91	4.93	5.00	5.15
$Dm(g \text{ cm}^3)$			4.80 ± 0.1		
Z	2	2	2	2	2

^a Ref. (9).

^b Data based on powder photograph *d*-spacings for Pm(IO₃)₃·xH₂O, Ref. (10); see text.

TABLE X

Crystallographic Data for the Rare-Earth Iodate Dihydrates Type I

	Tm(IO ₃) ₃ ·2H ₂ O	Yb(IO ₃) ₃ ·2H ₂ O	Lu(IO ₃) ₃ ·2H ₂ O
			
a (Å)	8.233 ± 13	8.217 ± 18	8.018 ± 12
b (Å)	10.134 ± 14	10.074 ± 19	9.956 ± 21
c (Å)	7.015 ± 13	7.037 ± 22	6.969 <u>+</u> 16
α	100.5 ± 0.2°	$100.0 \pm 0.3^{\circ}$	$99.8 \pm 0.2^{\circ}$
β	94.9 ± 0.2°	94.1 ± 0.6°	$93.8 \pm 0.2^{\circ}$
γ	66.6 <u>+</u> 0.1°	$66.3 \pm 0.2^{\circ}$	$68.2 \pm 0.2^{\circ}$
Volume (Å ³)	528.1	525.1	508.9
S.G.	РĪ	ΡĪ	ΡĪ
Ζ	2	2	2
$Dx (g \text{ cm}^{-3})$	4.59	4.64	4.80
$Dm (g \text{ cm}^{-3})$	4.5 ± 0.1		_

TABLE XI

	Tm(I	[O ₃)₃ • 2H₂O		Yb(I	Yb(IO ₃) ₃ ·2H ₂ O			Lu(IO ₃) ₃ ·2H ₂ O			
h k l	$d_{\rm obs}({\rm \AA})$	d _{calc} (Å)	Ι	$d_{\rm obs}({\rm \AA})$	$d_{ m calc}({ m \AA})$	I	$d_{obs}(\text{\AA})$	d _{calc} (Å)	Ι		
010	9.11	9.18	2	9.02	9.10	2	9.04	9.13	2		
001	6.92	6.90	5	6.91	6.93	5	6.85	6.87	2		
II 1	5.39	5.46	8	5.31	5.44	8	5.31	5.32	4		
011	5.13	5.13	3	5.13	5.14	3	5.11	5.11	2		
020	4.55	4.59	1		4.55	< 1	4.55	4.56	1		
021	4.14	4.14	1	4.12	4.12	1	4.14	4.11	2		
111	3.87	3.89	3	3.86	3.86	2	3.85	3.86	3		
200	3.77	3.78	3	3.76	3.76	2	3.73	3.72	2		
021	3.57	3.56	5	3.56	3.55	5	3.56	3.55	5		
221	3.49	3.49	4	3.48	3.47	4		3.47	< 1		
002	3.45	3.45	10	3.44	3.42	10	3.44	3.43	6		
Ī 2 0	3.36	3.38	4	3.35	3.35	6	3.34	3.38	4		
201	3.27	3.29	6	3.27	3.30	8	3.26	3.27	4		
121	3.18	3.18	6	3.18	3.16	7	3.18	3.18	4		
210	3.10	3.09	6	3.09	3.08	6	3.08	3.08	4		
030	3.05	3.06	7	3.05	3.03	7	3.05	3.04	10		
230	3.02	3.02	5	3.02	3.02	4	3.02	3.03	2		
031	2.98	2.98	5	2.97	2.96	5	2.97	2.96	3		
<u>1</u> 21	2.91	2.91	1	2.91	2.89	1	2.90	2.90	1		
2 11	2.78	2.78	6	2.77	2.76	4	2.77	2.77	4		
320	2.68	2.69	9	2.67	2.69	7	2.66	2.66	6		
031	-	2.64	< 1	2.64	2.63	1	2.62	2.62	1		

Observed and Calculated *d*-Spacings and Observed Intensities for the Rare-Earth IODATE DIHYDRATES TYPE I

TABLE XII

Crystallographic Data for the Dihydrated 4f-Iodates of Type II From Nd to Er, Including Y

Rare earth	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Volume (Å ³)	Dx (g cm ⁻³) ^a
Nd	7.56 ± 4	10.77 ± 5	7.34 ± 2	105.3 ± 0.4	110.8 ± 0.7	97.9 <u>+</u> 0.6	520.7	4.50
Sm	7.53 ± 3	10.77 ± 4	7.35 ± 2	105.3 ± 0.3	110.5 ± 0.4	98.2 ± 0.5	519.7	4.54
Eu	7.47 + 3	10.66 ± 3	7.33 ± 2	105.1 ± 0.2	110.9 ± 0.3	97.6 ± 0.3	510.1	4.64
Gd	7.51 ± 2	10.61 ± 2	7.34 ± 1	104.6 ± 0.1	110.8 ± 0.2	97.5 ± 0.2	513.1	4.65*
Tb	7.47 ± 2	10.66 ± 3	7.34 ± 1	104.8 ± 0.1	111.0 ± 0.3	97.5 <u>+</u> 0.4	511.0	4.68
Dv	7.50 + 3	10.69 ± 3	7.31 ± 2	105.1 ± 0.3	110.8 ± 0.3	97.9 ± 0.3	511.8	4.69
Ho	7.51 ± 2	10.68 ± 2	7.26 ± 1	104.4 ± 0.1	111.6 ± 0.2	98.3 ± 0.1	506.2	4.76
Er	7.50 ± 1	10.73 ± 2	7.28 ± 1	104.4 ± 0.2	111.5 ± 0.1	98.3 ± 0.2	509.1	4.75
Y	7.48 ± 2	10.70 ± 3	7.29 <u>+</u> 2	104.6 <u>+</u> 0.3	110.9 ± 0.3	98.3 ± 0.3	509.0	4.24

^{*a*} For two formula weights per unit cell, in space group $P\overline{1}$. ^{*b*} $Dm = 4.7 \pm 0.1$ g cm⁻³.

Nu(GO): 214,0 Eu(GO):	~	7	1	1 "	, .	, m	1	~	-	2		'n	2	ŝ	2	10	<i>و</i>	4		e		~	1	, v	, .			,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	·2H ₂ C	dcalc	8	25	2 22	.37	101	.67	8	.58	.46	40	.35	.33	.24	.14	11.	.02	> 96.	.97	82 <	72	- (1) - (1)	19	29 29			/]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	((O))	dobs	1 12		2	28	8	.67	61	.57 3	- -	.41 3	.35 3	.30	.23	.14 3	.11 3	.03	1	.97 2	1	71 2	1	- 2 - - 9	- ~ 	, v 1	ء ، ا	1 4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		~	~	, w	, ,	4	4	10 3	2	3	-	9 3	7 3	5 3	4	9	10 3	3 3	س	3 2	-	4	4	6 2		م	, –	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	·2H20	calc	50	5.5	54 V	38	02	.68	8	.58	47	39	35	34	24	14	11	03	98	76	82	72	<u>66</u>	62	50	14	۷ ع: د	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r(l03)3	lobs d	75 10	13 6	ن د : ا	30 5	01 4	.68 3.	.63 3.	.58 3.	س	42 3.	36 3.	30 3.	24 3.	.14 3.	.11 3.	64 3.	00 2.	99 2.	i, 	72 2.	66 2.	62 2.	50 2.	41 2	· ~	i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ш	-	0	· · ·		i Ki I Ki	1 4	0 3.	1 3.	1 3.	ι Γ	4.3.	4 3.	4 3.	4.3.	9.3.	9.3.	З.	1 3.	2.2.	1	7 2.	4	7 2.	1 2.	1	, ı	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	·2H ₂ 0	alc	86	44	∨ ∓::		01	1 69	59	57	5	39	36	2	ŝ	13	10	2	V V	10	V E	2	5	0	۲ ا	۷ ا د	V 7	
Nd(0.b), 2H ₂ O Sm(10.b), 2H ₂ O Eu(10.b), 2H ₂ O Eu(10.b), 2H ₂ O Eu(10.b), 2H ₂ O Eu(10.b), 2H ₂ O Dy(10.b), 2H ₂ O <thdy(10.b), 2h<sub="">2O <thdy(10.b), 2h<sub="">2O<td>(IO₃)3</td><td>bs de</td><td>6 55</td><td>11 2</td><td>غي خ</td><td>0 1 1</td><td>0 4.0</td><td>6 3.0</td><td>1 3.</td><td>1 3.</td><td>5 3.4</td><td>0 3.3</td><td>6 3.3</td><td>0 3.3</td><td>3.3</td><td>3.3.</td><td>ю Э.</td><td>3.0</td><td>.2.5</td><td>7 2.5</td><td>. 2.8</td><td>1 2.7</td><td>5 2.6</td><td>0 2.6</td><td>2.5</td><td>2.4</td><td>2.3</td><td></td></thdy(10.b),></thdy(10.b),>	(IO ₃)3	bs de	6 55	11 2	غي خ	0 1 1	0 4.0	6 3.0	1 3.	1 3.	5 3.4	0 3.3	6 3.3	0 3.3	3.3	3.3.	ю Э.	3.0	.2.5	7 2.5	. 2.8	1 2.7	5 2.6	0 2.6	2.5	2.4	2.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Но	<i>q</i> °	6	9	;	5.3	4.0	3.6	3.6	3.5	3.4	3.4	3.3	3.3	3.2	3.1	3.1	3.0	1	2.9	!	2.7	2.6	2.6	I	I		
Md(IO) 2H ₂ O Eu(O) 2H ₂ O 2H	$2H_2O$	le /			, <u> </u>	, s		8 10	1	0		ŝ	9	4	4	6	4	5	1	-	V	V	V	V	V	V 1	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IO3)3-5	s dca	6.6	6.7	6.45	5.4	4.0	3.68	3.61	3.55	3.46	3.42	3.36	3.33	3.25	3.12	3.10	3.03	2.98	2.95	2.81	2.72	2.65	2.60	2.52	2.43	2.32	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dy(dob	9.83	6.76		5.31	4.03	3.68	3.62	3.59	3.47	3.42	3.37	3.31	3.24	3.15	3.11	3.04	3.00	2.98	ļ	1	1	1	1		l	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 ₂ 0	~	~	9	, <u> </u>	Ś	ы	10	e	e	ы	7	7	7	ŝ	œ	9	7	-	ы	ī	9	īv	īv	7 7	īv	ī	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.51	dcalc	96.6	6.76	6.43	5.40	4.03	3.67	3.61	3.60	3.46	3.42	3.36	3.33	3.26	3.12	3.12	3.03	2.98	3.00	2.83	2.74	2.63	2.62	2.54	2.44	2.33	00.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tb(I(d_{obs}	9.78	6.73		5.30	4.02	3.68	3.62	3.60	3.46	3.43	3.36	3.32	3.25	3.15	3.12	3.9	3.02	2.98	1	2.71	I	ł	۱	۱	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[² 0	~	1	ы	7	7	īv	10	4	īv	1	ŝ	Ś	5	÷	×	e	1	۲V	ī	ī	9	īv	ы	1	7	6	¢
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	'3·2H	dcate	9.96	6.72	6.42	5.40	4.03	3.69	3.62	3.60	3.44	3.43	3.38	3.32	3.25	3.12	3.12	3.02	2.98	3.01	2.83	2.73	2.63	2.62	2.54	2.44	2.33	ç
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gd(IO	d_{obs}		6.72	1	5.31	1	3.69	3.62	1	3.48	3.43	3.38	3.32	3.25	3.16	3.12	I	1	1		2.72		2.62	2.52	2.42	2.32	000
Md(10,)): 2H ₂ O Sm(10,)): 2H ₂ O Eu(10,); 2H ₂ O hkl d_{obs} d_{cale} I	20	-	$\overline{\mathbf{v}}$	щ	ī	1	ы	10	Ś	īv	1	2	4	9	m	6	٢	1	6	6	ī	×	'n	ŝ	4	īv		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(3)3 · 2H	dcalc	76.6	6.75	6.41	5.40	4.03	3.67	3.60	3.60	3.46	3.43	3.36	3.32	3.26	3.13	3.11	3.03	2.98	2.98	2.83	2.72	2.62	2.61	2.52	47	2.33	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eu(IO	$d_{\rm obs}$	1	6.73	1	5.30	4.01	3.68	3.60		3.46	3.43	3.36	3.32	3.25	3.16	3.11	3.04	3.02	2.98	1	2.72	2.63	2.61	2.52	1	1	
Nd(10_3): 2H_2O Sm(10_3): 2H_2O hkl d_{obs} d_{aalte} I d_{obs} d_{aalte} 100 6.80 d_{aalte} I d_{obs} d_{aalte} 11 5.37 5.44 1 5.34 5.42 121 - 4.06 51 - 6.58 121 - 4.06 51 4.06 5.34 121 - 3.61 6.19 3.61 6.83 121 - 3.61 5.34 10.03 3.40 121 - 3.61 - 3.61 3.70 3.70 122 3.49 3.49 8 3.53 3.43 3.44 2011 - 3.361 - 3.361 3.361 172 - 3.49 3.34 3.34 3.34 2112 - 3.361 3.361 3.361 3.361 2112 - 3.34 3.34 <td< td=""><td>ဂ္ဂ</td><td>-</td><td>7</td><td>4</td><td>īv</td><td>4</td><td>ы</td><td>10</td><td>7</td><td>ī</td><td>-</td><td>œ</td><td>ŝ</td><td>ŝ</td><td>e</td><td>S</td><td>4</td><td>4</td><td>-</td><td>-</td><td>ī</td><td>6</td><td>-</td><td>- V</td><td>-</td><td>1</td><td>1</td><td>•</td></td<>	ဂ္ဂ	-	7	4	īv	4	ы	10	7	ī	-	œ	ŝ	ŝ	e	S	4	4	-	-	ī	6	-	- V	-	1	1	•
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,3, 2H	dcalc	0.03	6.81	6.58	5.42	4.04	3.70	3.61	3.61	3.49	3.44	3.37	3.34	3.27	3.18	3.11	3.04	5.99	3.00	5.86	2.73	2.63	2.61	2.53	44.7	2.33	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sm(IC	d_{0bs}	9.94	6.74	1	5.34	4.06	3.70	3.63	I	3.50	3.45	3.38	3.34	3.26	3.19	3.11	3.04		2.99	1	2.73	1	1	I	1	1	
hkl d _{obs} d _{alc} 10 9.97 10.04 10 9.97 10.04 11 5.37 5.44 121 5.37 5.44 121 5.37 5.44 121 5.37 5.44 121 5.37 5.44 121 3.49 3.49 031 3.49 3.43 031 3.49 3.43 031 3.49 3.43 031 3.49 3.43 031 3.49 3.43 031 3.49 3.43 031 3.49 3.43 031 3.36 3.35 122 3.31 3.17 123 3.19 3.17 131 3.19 3.17 132 3.19 3.17 133 3.19 3.17 131 3.19 3.17 131 3.13 3.13 132<	ا 20	I	ы	щ	1	1	ī	6	80	ī	œ	ī	ī	10	ы	4	4	m	-	-	-	-	-	1	7	4	4	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,1)3 · 2H	dcale	0.04	6.83	6.44	5.44	4.06	3.71	3.63	3.61	3.49	3.43	3.39	3.35	3.27	3.17	3.11	3.05	3.00	3.01	2.85	2.74	5.63	2.61	2.54	44.	2.33	22 0
y y	DI)PN	$d_{\rm obs}$	9.97	6.80	6.44	5.37	I	3.72	3.64	1	3.49	1	1	3.36	3.29	3,19	3.11	3.05		1	1	2.74	1	2.63	2.53	2.44	2.31	•
	1	h k l	010	100	001	111	121	201	120	<u>[</u>]2	031	012	2 <u>1</u> 1	030	[<u>2</u> 2.	131	[12	31	2 I 2	210	32	30	31	[22]	20 2	113 2	513 2	

TABLE XIII

CRYSTALLOGRAPHIC SURVEY OF THE 4*f*-10DATES

" See footnote to Table IV.

Gd(IO ₃) ₃ ··	4H₂O	Lu(IO ₃) ₃ ·4H ₂ O				
d _{obs} (Å)	Ι	$d_{\rm obs}({\rm \AA})$	Ι			
9.43	3					
7.54	4	7.55	4			
7.16	3	7.06	4			
5.11	2	5.05	4			
4.94	2	4.92	3			
3.85	5	3.85	5			
3.77	7	3.79	4			
3.60	4	3.72	3			
3.43	5	3.56	4			
3.40	4	3.35	10			
3.31	10	3.28	3			
3.04	1	3.24	1			
3.00	1	3.00	2			
2.96	2	2.93	4			
2.86	3	2.78	3			
2.77	1	2.75	6			
2.75	4	2.64	1			
2.65	4	2.59	1			
2.62	2	2.54	1			
2.57	3					

TABLE XIV Observed *d*-Spacings and Intensities of Gd(10₃)₃·4H₂O and Lu(10₃)₃·4H₂O

b' = 6.760, c' = 7.469 Å and $\beta = 93.1^{\circ}$ which, except for small distortions, is identical with the orthorhombic cell of the corresponding Ce(IO₃)₃· $\frac{1}{2}$ H₂O. Table IX also contains the lattice constants of isomorphous Pm(IO₃)₃· H₂O, derived from the powder data given for "Pm(IO₃)₃·xH₂O" by Scherer (10) and refined by the method of least squares.

The detailed crystal structure of $Nd(IO_3)_3$. H₂O has now been determined (9), but the structural effect of removing half the water has not yet been investigated.

The monohydrate structure is polar, with strong pyroelectric and piezoelectric coefficients (11), and it generates second harmonics with an efficiency about an order of magnitude greater than quartz.

8. Dihydrated 4f-Iodates, Type I: Tm to Lu

The rare-earth iodate dihydrates of Type I crystallize from boiling aqueous solution in the triclinic system. The reduced cell crystallographic data for the three members of this family are given in Table X, with lattice constants obtained (8), by the method of least

Ce(IO ₃) ₃ ·5	5H₂Oª	$Pr(IO_3)_3$	$\Pr(IO_3)_3 \cdot 5H_2O \qquad \qquad Nd(IO_3)_3 \cdot 5H_2O$		5H₂O	$Sm(IO_3)_3 \cdot 5$	H₂Oª
$d_{\rm obs}({\rm \AA})$	Ι	$d_{\rm obs}({\rm \AA})$	Ι	dobs (Å)	Ι	dobs (Å)	Ι
4.25	1	6.87	2	11.41	1	3.52	10
3.70	1	6.52	2	6.51	1	3.31	4
3.58	10	4.88	1	5.97	1	3.23	4
3.32	1	4.37	1	3.99	2	2.96	5
3.19	3	4.00	2	3.87	1		
3.18	2	3.75	3	3.74	3		
3.00	1	3.67	2	3.56	10		
2.85	1	3.57	10	3.37	1		
2.81	1	3.30	5	3.31	3		
2.76	1	3.18	8	3.17	3		
2.60	1	3.09	4	3.09	1		
2.45	1	3.00	5	2.99	2		
2.33	1	2.95	4	2.80	1		
2.23	2	2.89	2	2.60	1		
		2.81	3				
		2.75	3				
		2.68	2				
		2.61	3				

TABLE XV

Observed d-Spacings and Intensities of Ce, Pr, Nd, and $Sm(IO_3)_3 \cdot 5H_2O$, Type 1

" Best patterns available.

squares by fitting precession- and Weissenbergderived initial values to the *d*-spacings given in Table XI. The unit cell contains two formulas of rare-earth iodate dihydrate. The lack of second harmonic generation shows the space group to be the centrosymmetric $P\bar{1}$.

9. Dihydrated 4f-Iodates, Type II: Nd to Er

The eight isostructural Type II rare-earth and yttrium iodate dihydrates crystallize in the triclinic system, from boiling aqueous solution, as does the Type I family. Approxi-

TABLE XVI

Observed and Calculated d-Spacings and Observed Intensities for Rare-Earth Iodate Pentahydrates Type II

	La(l	(O₃)₃ · 5H₂O		Pr(IO ₃) ₃ ·5H ₂ O					
h k l	$d_{\rm obs}$ (Å)	d _{calc} (Å)	Ι	dobs (Å)	d _{cale} (Å)	I			
0 2 0	11.55	11.57	6	11.49	11.56	6			
0 0 1	6.64	6.58	1		6.56	< 1			
040	5.79	5.79	1	5.74	5.78	1			
Ī 21	5.19	5.14	1	5.16	5.16	1			
Ī 31	4.56	4.60	5	4.58	4.62	3			
1 4 0		4.24	< 1	4.18	4.24	1			
ī 41	4.01	4.07	2		4.08	< 1			
060	3.89	3.86	4	3.87	3.85	4			
1 50	3.71	3.71	6	3.69	3.72	6			
Ī 51		3.60	< 1	3.60	3.61	2			
T 02	3.50	3.51	3	3.52	3.51	2			
Ī 12		3.47	< 1	3.48	3.47	2			
1 3 1	3.45	3.45	8	3.41	3.44	8			
160		3.28	< 1	3.28	3.28	1			
Ī 32	3.21	3.20	2	3.20	3.20	1			
0 2 2	3.17	3.17	7	3.15	3.15	5			
231	3.07	3.07	2		3.09	< 1			
0 3 2	3.03	3.03	10	3.01	3.02	10			
071	2.95	2.95	4	2.94	2.95	2			
2 41	2.89	2.90	1		2.91	< 1			
Ī 52	2.82	2.80	2	2.81	2.80	1			
$\overline{2}$ 32	2.71	2.69	1	2.69	2.70	1			
0 8 1	2.66	2.65	1		2.64	< 1			
1 0 2	2.54	2.54	1	2.53	2.53	1			
0 6 2	2.50	2.50	1	_	2.50	< 1			
1 3 2	2.43	2.41	1	2.41	2.40	1			
091	2.39	2.39	1		2.39	< 1			
190	2.37	2.38	1		2.38	< 1			
Ī 33	2.27	2.27	3	2.26	2.26	2			
301	2.25	2.24	2	2.25	2.25	2			
0 3 3	2.11	2.11	1	2.10	2.10	1			
ī92	2.08	2.07	2	2.06	2.07	3			
1 10 1	1.987	1.983	2	1.974	1.981	5			
2 10 1	1.903	1.903	8	1.897	1.906	7			
2 8 1	1.878	1.880	2	1.874	1.879	1			
1 11 1	1.848	1.846	3	1.836	1.844	4			

mate lattice constants, obtained from single crystal diffraction photographs of Nd(IO₃)₃· $2H_2O$, Type II, refined to the values given in Table XII using the method of least-squares (8) and the *d*-spacings of Table XIII. The powder pattern of the Sm(2_{II}) compound could thus be indexed (Table XIII) and the lattice constants refined as in Table XII, and so on, for the remaining members of the Type II family. The unit cell volume of Er(2_{II}) is significantly smaller than that of Tm(2_I), indicating the packing in the Type II family to be appreciably more efficient than in Type I.

Type II dihydrates do not generate second harmonics; hence, the space group is taken to be $P\bar{1}$.

10. Tetrahydrated 4f-Iodates, Gd to Lu

The rare-earth iodate tetrahydrates are obtained at room temperature either by precipitation, by gel growth, or by evaporation of aqueous solution (6). The largest crystals grown had dimensions less than 10 μ m; hence, single crystal data were not measured. Powder patterns for the end isostructural members of this family are given in Table XIV. No second harmonic generation is observed.

11. Pentahydrated 4f-Iodates, Type I: Ce to Sm

Polycrystalline pentahydrates of Type I are prepared by the same methods as the tetrahydrates, with maximum dimensions less than 10 μ m. Powder patterns for the four Type I pentahydrates are given in Table XV. These powders do not generate second harmonics.

12. Pentahydrated 4*f*-Iodates, Type II: La and Pr

La(IO₃)₃·5H₂O and Pr(IO₃)₃·5H₂O, Type II, crystallize by slow evaporation from aqueous solution or by gel growth (7) in the monoclinic system. Single crystal diffraction photographs show the only systematic absences to be in 0k0 with k = 2n + 1, leading to the assignment of space groups $P2_1$ or $P2_1/m$. The lack of second harmonic generation indicates the centrosymmetric choice. Approximate lattice constants obtained from precession photographs were used both to index the *d*-spacings given in Table XVI, and

TABLE XVII	
CRYSTALLOGRAPHIC DATA FOR $La(IO_3)_3 \cdot 5H_2O$	AND
$Pr(IO_3)_3 \cdot 5H_2O$, Type II	

	$La(IO_3)_3 \cdot 5H_2O$	$Pr(IO_3)_3 \cdot 5H_2O$
a (Å)	6.722 ± 9	6.768 ± 8
b (Å)	23.141 ± 16	23.120 ± 39
c (Å)	7.113 ± 6	7.107 ± 7
β	$112.3 \pm 0.1^{\circ}$	$112.7 \pm 0.1^{\circ}$
Volume (Å ³)	1023.7	1025.9
S.G.	$P2_1/m$	$P2_1/m$
Ζ	4	4
Dx (g cm ⁻³)	4.89	4.89
Dm (g cm ⁻³)		4.7 ± 0.2

as initial values in least-squares refinement (8), leading to the final values of Table XVII.

13. Summary

Thirteen crystallographically distinct families of 4f-iodates, including hydrates, have been investigated. The hemihydrate and monohydrate are noncentrosymmetric, generating second harmonics. Small single crystals, large enough for measurement of lattice constants, were prepared for seven families, including the two that are noncentrosymmetric.

References

- 1. S. C. ABRAHAMS, Mater. Res. Bull. 6, 881 (1971).
- 2. K. NASSAU, J. W. SHIEVER, AND B. E. PRESCOTT, J. Solid State Chem. 7, 186 (1973).
- K. NASSAU, A. S. COOPER, J. W. SHIEVER, AND B. E. PRESCOTT, J. Solid State Chem. 8, 260 (1973).
- S. C. ABRAHAMS, R. C. SHERWOOD, J. L. BERNSTEIN, AND K. NASSAU, J. Solid State Chem. 7, 205 (1973).
- S. C. ABRAHAMS, R. C. SHERWOOD, J. L. BERNSTEIN, AND K. NASSAU, J. Solid State Chem. 8, 274 (1973).
- K. NASSAU, J. W. SHIEVER, B. E. PRESCOTT, AND A. S. COOPER, J. Solid State Chem. 11, 314 (1974).
- K. NASSAU, J. W. SHIEVER, AND B. E. PRESCOTT, J. Solid State Chem., 14, 122 (1975).
- 8. H. T. EVANS, D. E. APPLEMAN, AND D. S. HAND-WERKER, Amer. Cryst. Assoc. Program and Abstracts 42 (1963).
- R. LIMINGA, S. C. ABRAHAMS, AND J. L. BERNSTEIN, J. Chem. Phys. 62, 755 (1975).
- V. SCHERER, U.S. Atomic Energy Commission Report BMWF-FBK 68-03 (1968).
- 11. R. LIMINGA AND S. C. ABRAHAMS, J. Appl. Cryst., in press.